5 Minutes about nitrox All the most important facts about nitrox you must know it can save your life

  • 🎬 Video
  • ℹ️ Published 4 years ago
preview_player
UC0j0O4DfIYSSfyGIw7D-YiQ

Nitrox refers to any gas mixture composed (excepting trace gases) of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater diving, nitrox is normally distinguished from air and handled differently. The most common use of nitrox mixtures containing oxygen in higher proportions than atmospheric air is in scuba diving, where the reduced partial pressure of nitrogen is advantageous in reducing nitrogen uptake in the body's tissues, thereby extending the practicable underwater dive time by reducing the decompression requirement, or reducing the risk of decompression sickness.
Nitrox is known by many names: Enriched Air Nitrox, Oxygen Enriched Air, Nitrox, EANx or Safe Air.
Nitrox is used to a lesser extent in surface-supplied diving, as these advantages are reduced by the more complex logistical requirements for nitrox compared to the use of simple low-pressure compressors for breathing gas supply. Nitrox can also be used in hyperbaric treatment of decompression illness, usually at pressures where pure oxygen would be hazardous. Nitrox is not a safer gas than compressed air in all respects; although its use can reduce the risk of decompression sickness, it increases the risk of oxygen toxicity and fire.

Though not generally referred to as nitrox, an oxygen-enriched air mixture is routinely provided at normal surface ambient pressure as oxygen therapy to patients with compromised respiration and circulation.

Uses

Underwater diving.

Enriched Air Nitrox, nitrox with an oxygen content above 21%, is mainly used in scuba diving to reduce the proportion of nitrogen in the breathing gas mixture. The main benefit is reduced decompression risk. To a considerably lesser extent it is also used in surface supplied diving, where the logistics are relatively complex, similar to the use of other diving gas mixtures like heliox and trimix.
Therapeutic recompression.


Nitrox50 is used as one of the options in the first stages of therapeutic recompression using the Comex CX 30 table for treatment of vestibular or general decompression sickness. Nitrox is breathed at 30 msw and 24 msw and the ascents from these depths to the next stop. At 18m the gas is switched to oxygen for the rest of the treatment.
Medicine, mountaineering and unpressurised aircraft.
The use of oxygen at high altitudes or as oxygen therapy may be as supplementary oxygen, added to the inspired air, which would technically be a use of nitrox, blended on site, but this is not normally referred to as such, as the gas provided for the purpose is oxygen.

The two most common recreational diving nitrox mixes contain 32% and 36% oxygen, which have maximum operating depths (MODs) of 34 metres (112 ft) and 29 metres (95 ft) respectively when limited to a maximum partial pressure of oxygen of 1.4 bar (140 kPa). Divers may calculate an equivalent air depth to determine their decompression requirements or may use nitrox tables or a nitrox-capable dive computer.

Nitrox with more than 40% oxygen is uncommon within recreational diving. There are two main reasons for this: the first is that all pieces of diving equipment that come into contact with mixes containing higher proportions of oxygen, particularly at high pressure, need special cleaning and servicing to reduce the risk of fire. The second reason is that richer mixes extend the time the diver can stay underwater without needing decompression stops far further than the duration permitted by the capacity of typical diving cylinders.
For example, based on the PADI nitrox recommendations, the maximum operating depth for EAN45 would be 21 metres (69 ft) and the maximum dive time available at this depth even with EAN36 is nearly 1 hour 15 minutes: a diver with a breathing rate of 20 litres per minute using twin 10-litre, 230-bar (about double 85 cu. ft.) cylinders would have completely emptied the cylinders after 1 hour 14 minutes at this depth.

💬 Comments
Author

What’s with the Air Force altitude chamber picture in the beginning of this video?

Author — Dougie Fresh

Author

If I wanted to read I would not be on a video sharing platform.

Author — Dr Enleicht